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Abstract— A large fraction of total healthcare expenditure
occurs due to end-of-life (EOL) care, which means it is
important to study the problem of more carefully incentivizing
necessary versus unnecessary EOL care because this has the
potential to reduce overall healthcare spending. This paper
introduces a principal-agent model that integrates a mixed
payment system of fee-for-service and pay-for-performance in
order to analyze whether it is possible to better align healthcare
provider incentives with patient outcomes and cost-efficiency in
EOL care. The primary contributions are to derive optimal
contracts for EOL care payments using a principal-agent
framework under three separate models for the healthcare
provider, where each model considers a different level of risk
tolerance for the provider. We derive these optimal contracts by
converting the underlying principal-agent models from a bilevel
optimization problem into a single-level optimization problem
that can be analytically solved. Our results are demonstrated
using a simulation where an optimal contract is used to price
intracranial pressure monitoring for traumatic brain injuries.

I. INTRODUCTION

End-of-life (EOL) care is a large part of the total spending

on healthcare. For instance, in the United States a significant

portion of health expenditures occurs in the final six months

of life, comprising approximately 10% of total national

healthcare spending [1], [2], with 40% of this spending

occurring in the last 30 days. Despite the enormous spending

on EOL care, studies suggest these expenditures do not

necessarily improve patient outcomes [3], [4], [5]. Given the

significant disconnect between the current level of spending

on EOL care and patient outcomes, it is important to study

further how to balance these issues better.

Typically, EOL decisions are informed by discussions with

key stakeholders, including partners, family members, or

the patients themselves. Evidence suggests that early EOL

conversations correlate with less aggressive and more cost-

effective EOL care, with as much as a 95% reduction in

expenditure [6], and receipts of palliative care can reduce

hospitalization costs and the likelihood of readmission [7].

At a broad level, a number of different payment models

have been proposed for healthcare, including capitation,

salary, fee-for-service (FFS), pay-for-performance (P4P), and

combinations thereof [8]; because it has been recognized that

changes in how healthcare providers are paid can signifi-

cantly influence the cost-effectiveness of clinical decisions

[9]. In the realm of EOL care, there has been a growing

advocacy for integrating pay-for-performance incentives to
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elevate the quality of palliative care services [10]. Con-

currently, empirical evidence suggests a preference for the

fee-for-service model for terminally ill patients, particularly

when compared with other Medicare plans [11].

A. Related Work on Payment Models

Current incentives result in more use of services [12],

and several works have studied contract design for related

topics. Research has explored the influence of medical choice

on healthcare costs in chronic disease patients, examining

the interaction between these choices and principal-agent

dynamics [13]. Additionally, the issue of common-agency

problems in the US healthcare system has been scrutinized,

particularly in terms of its impact on healthcare contracting

and care coordination [14]. Furthermore, the design and im-

plications of financial incentives in integrated care systems,

with a particular focus on bundled care models, have been

analyzed [15]. Overall, advanced medicare payment leads to

greater patient quality of life and satisfaction, cost savings,

and provider satisfaction [16]. Despite these studies, optimal

payment pricing for EOL care has not been studied to the

best of our knowledge.

B. Payment Models for EOL Care

The main challenge with designing efficient payment mod-

els for EOL care is a fundamental information asymmetry

that occurs between the party paying (e.g., health insurance

or government) and the healthcare provider. The provider has

more knowledge about patients than the payer, so the payer

cannot directly observe whether some provided EOL care

was necessary or unnecessary. The payer only observes the

amount of effort (i.e., the procedures and their costs) that the

provider exerts into the EOL care and the outcomes of the

patient (e.g., lived or died within 30 days). As a result, it is

common for the payer to use fee-for-service as a payment

model whereby the provider is paid commensurate with the

costs of the procedures performed.

The setup of the above-described situation motivates the

core idea of our paper: Suppose we design a contract where

the payment amount to a provider depends upon both the

amount of effort and the outcome of the patient. Would

such a contract better incentivize providers to only provide

necessary EOL care? The idea is that the contract could be

designed such that it gives the highest payments when the

provider exerts effort and the patient has a good outcome,

whereas lower payments are provided when the patient has

a poor outcome. By modulating payments for effort by the

outcome, our proposed contract combines elements of fee-

for-service and pay-for-performance payment models.



C. Contributions and Outline

Our paper makes three contributions. First, to the best of

our knowledge, the idea of modulating EOL care payments

based on a binary outcome measure (e.g., survival) is novel.

The underlying principal-agent models we propose are also

new. Second, we derive the optimal contracts under these

models. Though the principal-agent models are described by

a bilevel optimization problem, we implicitly convert these

into single-level optimization problems by using constraints

that capture the fact that healthcare providers maximize their

utility functions. This allows us to solve the optimization

problem analytically to derive the optimal contract. Third, we

propose an algorithm to estimate the parameters appearing in

our optimal contracts from real-world data. This estimation

methodology is demonstrated using real data.

Sect. II starts by defining the utility functions for the payer

and provider, and then it formulates three different principal-

agent models, where each model considers a different level

of risk tolerance for the provider. In Sect. III, we solve

the bilevel optimization problem underlying our principal-

agent models in order to derive the optimal contract. We

also discuss qualitative insights generated from the optimal

contracts. Finally, Section V offers a practical demonstration

of our framework through a numerical simulation. This simu-

lation is contextualized in the setting of intracranial pressure

monitoring for traumatic brain injuries, and it features a novel

algorithm for the estimation of model parameters.

II. MODEL FORMULATIONS

In the healthcare system, providers deliver EOL care to

patients and receive compensation from payers. Patients

are categorized into two groups: S = 1 denotes a fa-

vorable/good responder status, while S = 0 indicates an

unfavorable/bad responder status. Identified good responder

status indicates patients’ profiles are associated with more

extensive treatment benefits. There are various statistical

models for classifying responder status using the baseline

demographic and clinical characteristics and predicting het-

erogeneous response to a certain treatment applied to a dis-

ease [17]. With the knowledge about the patients’ conditions,

healthcare providers decide expenditure level E regarding

whether to administer intensive interventions incurring high

costs E = 1 or opt for palliative care with lower expenditures

E = 0. Consequently, the patient outcomes are reflected in

Q = 1 for survival and Q = 0 for mortality. The ultimate

reimbursement P = pij is contingent upon both the patient’s

outcome Q = i and the healthcare expenditure level E = j
for i, j ∈ {0, 1}. Therefore, the healthcare provider must

carefully weigh both the quality and cost aspects of end-of-

life care.

A. Payer’s Utility Function

We assume a Bernoulli model for the patient’s outcome Q
depending on responder status S = s and expenditure level

E = j, Q ∼ Bern(πsj) for s, j ∈ {0, 1}. The probability of a

good responder status is also assumed as another independent

Bernoulli model S ∼ Bern(γ) for γ ∈ (0, 1).

Assumption 1. π01 ≥ π00, π11 ≥ π10, π10 ≥ π00, π11 ≥ π01

Remark 1. This indicates that higher expenditure generally
results in a better survival rate. Moreover, a good responder
yields a higher survival rate than a bad responder at the
same expenditure level. Additionally, under the Bernoulli
assumption, 0 < π01, π00, π11, π10, γ < 1.

The payer’s utility is a weighted sum of the expected

survival rate of the patients and the expected payment:

upayer = E(Q)− φ · E(P ), (1)

where E(Q) = (1− γ) · (1− π00)+ γ · π11 and E(·) denotes

expectation. Here, that constant parameter φ > 0 is a weight.

B. Provider’s Utility Function

The provider incurs a disutility F for high expenditure.

Without loss of generality, we normalize the units of the

principal-agent models by assuming that F = 1. Considering

the payments and costs, the provider’s utility is

uprovider = E(P |E)− 1(E = 1) · F (2)

where 1(·) is an indicator function that equals one when the

condition inside is true and zero otherwise.

C. Principal-Agent Model Formulations

We construct principal-agent models where the payer is

the principal, and the provider is the agent. We constrain

our model to ensure the expenditure level aligns with the

patient type; that is, the healthcare provider will exert in-

tensive interventions on good responders and palliative care

otherwise.

1) Free Payment Model: The first model is to maximize

the payer’s utility while allowing the payer to fine the

provider, if desired at optimality, for bad outcomes:

max
pij

E(Q)− φ · E(P )

s.t. E(P ) ≥ 0

E(P |S = 1, E = 1)− F ≥ E(P |S = 1, E = 0)

E(P |S = 0, E = 0) ≥ E(P |S = 0, E = 1)− F

(3)

The first constraint in (3) ensures that the healthcare provider

does not incur any loss (in expectation) in this scheme.

2) Non-Negative Payment Model: The second model does

not allow the payer to fine the provider:

max
pij

E(Q)− φ · E(P )

s.t. E(P |S = 1, E = 1)− F ≥ E(P |S = 1, E = 0)

E(P |S = 0, E = 0) ≥ E(P |S = 0, E = 1)− F

p00, p01, p10, p11 ≥ 0

(4)

We also examine the optimal solution under scenarios where

a false diagnosis of responder status could occur.



3) Risk-Averse Agent Model: If the provider is risk-averse,

then their utility for a payment is concave:

max
pij

E(Q)− φ · E(P )

s.t. E(g(P )|S = 1, E = 1)− F ≥ E(g(P )|S = 1, E = 0)

E(g(P )|S = 0, E = 0) ≥ E(g(P )|S = 0, E = 1)− F

p00, p01, p10, p11 ≥ 0
(5)

where g(·) is a bijective concave function that is positively

valued whenever its argument is a positive value.

III. OPTIMAL CONTRACTS

Next, we design optimal contracts for the models described

above by solving the corresponding optimization problems.

A. Free Payment Model

For every feasible incentive design, E(Q) is a constant

with respect to the outcome probabilities. In this situation,

we want the optimal solution with the smallest expected re-

imbursement. The preferred optimal solution can be reduced

to solving the following system of equations:⎧⎨
⎩

E(P ) = 0
E(P |S = 1, E = 1)− 1 ≥ E(P |S = 1, E = 0)
E(P |S = 0, E = 0) ≥ E(P |S = 0, E = 1)− 1

Denote

�c0 = [(1− γ)(1− π00), γ(1− π11), (1− γ)π00, γπ11]
T

�c1 = [π10 − 1, 1− π11,−π10, π11]
T

�c2 = [1− π00, π01 − 1, π00,−π01]
T

b0 = 0, b1 = 1, b2 = −1

With the definition for �P =
[
p00 p01 p10 p11

]T
, the

problem is equivalent to solving:⎧⎨
⎩

�c0 · �P = b0
�c1 · �P ≥ b1
�c2 · �P ≥ b2

(6)

Proposition 1. The binding system of (6) admits a solution
if and only if (1− γ)π01 + γπ11 < 1.

Proof. For the system⎡
⎣�c0

T

�c1
T

�c2
T

⎤
⎦ �P =

⎡
⎣b0b1
b2

⎤
⎦

One can do row reduced echelon on the coefficient matrix⎡
⎣�c0

T

�c1
T

�c2
T

⎤
⎦ and arrive at:

⎛
⎜⎝

1 0 0 − (π01−π11)((γ−1)π00−γπ10)
(π00−π10)((γ−1)π01−γπ11+1)

0 1 0 1
(γ−1)π01−γπ11+1 − 1

0 0 1 − (π01−π11)((γ−1)π00−γπ10+1)
(π00−π10)((γ−1)π01−γπ11+1)

⎞
⎟⎠

which shows that the matrix has full rank under the condition

(1− γ)π01 + γπ11 < 1.

Theorem 1. One optimal solution of (6) is

p00 →[−p11(π11 − π01)s0 + γ(π00π01 − 2π00π11

+ π00 + π10π11 − π10) + π00(π11 − π01)]

/[(π10 − π00)(1− s1)],

p01 →(−p11s1 − γ + 1)/(1− s1),

p10 →[p11(π11 − π01)(1− s0) + γ(π00π01 − 2π00π11

+ π00 − π01 + π10π11 − π10 + π11)− (1− π00)

· (π11 − π01)]/[(π10 − π00)(1− s1)],

where s0 = (1 − γ)π00 + γπ10 < 1 and s1 = (1 −
γ)π01+γπ11 < 1 are expected survival rate for high and low
expenditure respectively. Notice they increase as γ increases.

Proof. After obtaining the reduced row echelon form in

the previous proposition, one can derive the linear solution

subspace with p11 as a free variable.

Remark 2. Regarding p00, p10, p10 as a function of p11 we
have

∂p00
∂p11

= − (π11 − π01)s0
(π10 − π00)(1− s1)

< 0,

∂p01
∂p11

= − s1
1− s1

< 0,

∂p10
∂p11

=
(π11 − π01)(1− s0)

(π10 − π00)(1− s1)
> 0

which means that as we increase the welfare of high ex-
penditure spending with desirable outcomes, to maintain
optimality, we need to increase that of low expenditure of
survival outcome and decrease others.

Proposition 1 shows that an optimal contract ensures zero

expected payment for the payer while upholding the con-

straints that ensure low expenditures for bad responders and

high expenditures for good responders. The zero expected

payment is achievable in this model because the payer is

able to fine the provider when outcomes are poor.

B. Non-Negative Payment Model

The optimization problem is equivalent to

min
�P

cT0 �P − b0

s.t.

[
cT1
cT2

]
�P ≥

[
b1
b2

]

�P ≥ 0

(7)

By adding two slack variables �V =
[
v1 v2

]T
to the

above linear programming problem, the model is

min
�P ,�S

[
cT0 0 0

] [
�PT �V T

]T − b0

s.t.

[
cT1 −1 0
cT2 0 −1

] [
�PT �V T

]T
=

[
b1
b2

]
[

�PT �V T
] ≥ 0

(8)

Assumption 2. π01π10 �= π00π11



Remark 3. The assumption π10

π00
�= π11

π01
means that the

transitional benefit in survival rate from good responder to
bad responder is different with different expenditure levels.

Theorem 2. Under Assumptions 1 and 2, the optimal value
of (8) is γ, with solution of the following form:

p00 → 0,

p01 → t,

p10 → 0,

p11 → 1

π11
− 1− π11

π11
t,

where 0 ≤ t ≤ 1.

Proof. By adding slack variables, the optimal solution of

model (8) must satisfy four active linearly independent

constraints. After checking all basic points, and under As-

sumptions 1 and 2, there are only two solutions both primal

feasible and dual feasible, which are

p00 = 0, p01 = 1, p10 = 0, p11 = 1, v1 = 0, v2 = 0,

p00 = 0, p01 = 0, p10 = 0, p11 =
1

π11
, v1 = 0, v2 = 1− π01

π11

The optimal solution lies on the line segment of these two

basic points, with optimal value m∗ = γ.

The optimal contract (2) for the non-negative payment

model is characterized by a parameter t, and the quality of

the contract is equivalent for any t ∈ [0, 1]. Now consider

the case t = 0. Here, the provider receives zero payment if

there is low expenditure or if there is high expenditure but

a bad outcome. The provider only receives a payment when

there is a high expenditure and a good outcome.

In practical scenarios, the assumption of perfect classi-

fication of responders is not realistic. To address this, we

introduce two parameters: w0 := Pr(S = 0|TS = 1), rep-

resenting the false negative rate for responder classification,

and w1 := Pr(S = 1|TS = 0), denoting the false positive

rate, where TS is the true responder status class. These pa-

rameters encapsulate the probabilistic inaccuracies inherent

in the classification process. It is important to note that this

information remains concealed from the healthcare provider,

who bases decisions solely on the observed responder class

and selects the corresponding level of expenditure. Conse-

quently, this modification primarily impacts the objective

value, as it alters the survival distribution, thereby affecting

the utility of the payer. This adjustment introduces a more

realistic and nuanced dimension to the model, acknowledging

the uncertainties present in medical classification processes.

Specifically, the new model is the same as (7) except the

objective becomes cw0
T �P − b0 where

cw0
T = [(1− w0)(1− γ)(1− π00) + w1γ(1− π10),

w1(1− γ)(1− π01) + (1− w0)γ(1− π11),

(1− w1)(1− γ)π00 + w0γπ10,

w1(1− γ)π01 + (1− w0)γπ11]
T

The coefficient is formulated based on the unchanged con-

straint to incentivize healthcare providers to treat observed

favorable responders.

Proposition 2. In (7), replacing c0 with cw0 , under Assump-
tions 1 and 2, we obtain the optimal solution at

p00 = 0, p01 = 0, p10 = 0, p11 =
1

π11
, v1 = 0, v2 = 1− π01

π11

with optimal value mw
∗ = γ

(
1− π01w1

π1
− w0

)
+ π01w1

π1
.

Proof. Similar to Theorem 2, checking all basic points will

reveal the only optima in this case.

Interestingly, the optimal contract for this modified model

where patients’ responder status may be misclassified by the

provider is the same as the contract corresponding to t = 0
for the original form of this model with exact patient statuses.

Remark 4. From Theorem 2 and Proposition 2, direct
algebra reveals that

m∗ < m∗
w ⇔ π01w1

π11w0 + π01w1
> γ

C. Risk-Averse Agent Model

Considering the model in (5), we can define g−1 since it

is a bijective function. Relabeling W = g(P ), and noting

the survival rate is again a constant under the constraints,

we can reformulate the problem as follows:

min
wij

E(g−1(W ))

s.t. E(W |S = 1, E = 1)− F ≥ E(W |S = 1, E = 0)

E(W |S = 0, E = 0) ≥ E(W |S = 0, E = 1)− F

w00, w01, w10, w11 ≥ 0
(9)

which is equivalent to

min
W

cT0 g
−1(W )− b0

s.t.

[
cT1
cT2

]
W ≥

[
b1
b2

]

W ≥ 0

(10)

Moreover, we can compute solutions satisfying the KKT

conditions and claim their optimality because g−1 is convex

due to the concavity of g and the slater’s condition is satisfied

by Assumption 2 in the constraints.

Proposition 3. p00 = g−1(0), p01 = g−1(1), p10 = g−1(0),
p11 = g−1(1) is an optimal solution of problem (9) with
optimal optimal value γg(1).

Proof. Introduce λ1, λ2 as the Lagrangian multipliers of the

two inequality constraints, and μ = [μ00, μ01, μ10, μ11]
T as

the Lagrangian multipliers of the non-negativity constraints

with corresponding subscripts.



We can write out the KKT conditions as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c0 · ∇g−1(W )− λ1c1 − λ2c2 − μ = 0

λ1(c
T
1 W − b1) = 0

λ2(c
T
2 W − b2) = 0

μijWij = 0 for i, j = 0, 1

λ1, λ2, μ ≥ 0

(11)

Any point satisfying this KKT condition is optimal. Specifi-

cally, when W = [0, 1, 0, 1]T , we have cT1 W − b1 = cT2 W −
b2 = 0, and thus μ01 = μ11 = 0, and λ1, λ2, μ00, μ11 ≥
0. Denote cj [k] as the kth coordinate of vector cj . The

Lagrangian becomes:⎡
⎢⎢⎣

c1[1] c2[1] 1 0
c1[2] c2[2] 0 0
c1[3] c2[3] 0 1
c1[4] c2[4] 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λ1

λ2

μ00

μ01

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c0[1]∇g−1(0)
c0[2]∇g−1(1)
c0[3]∇g−1(0)
c0[4]∇g−1(1)

⎤
⎥⎥⎦

(12)

Solving (12), we have

⎡
⎢⎢⎣

λ1

λ2

μ00

μ01

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇g−1(1)γ
0

∇g−1(0)(1− γ)(1− π00)

+∇g−1(1)γ(1− π10)
∇g−1(0)γ(1− π00)

+∇g−1(1)γπ10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(13)

which satisfies non-negativity multiplier constraints.

The main feature of the optimal contract for this model is

that payments depend purely upon the expenditure level. Low

expenditures get a payment of g−1(0), and high expenditures

get a payment of g−1(1). The consequence is that our

proposed approach is ineffective in this case because the risk

aversion leads to a situation where the providers demand

to be compensated when they produce high expenditures,

regardless of the outcome. This means it is impossible to

incentivize providers to induce low expenditures for bad-

responding patients.

IV. NUMERICAL SIMULATION

Though intracranial pressure (ICP) monitoring is gen-

erally advised for patients with a severe traumatic brain

injury (TBI), its impact on patient outcomes is not well-

established. There is evidence that ICP monitoring reduces

in-hospital and two-week post-injury mortality [18]. How-

ever, more recent studies question its value because of its

cost-effectiveness and risk/benefit ratio [19], [20], [21].

To numerically evaluate our optimal contracts, we first

extracted a cohort of 25934 patients from the MIMIC-

IV database (Medical Information Mart for Intensive Care,

version 4) [22]. Out of the cohort, 728 patients were assigned

ICP monitoring. The cohort selection criteria are as follows:

admitted to ICU due to traumatic brain injury or neurological

disease; no relevant data is missing; has available data on

the Glasgow Coma Score (GCS). The admission diagnosis

is identified by the International Classification of Diseases

(ICD) code in the database. For patients with multiple ICU

stay records in the database, only the first ICU stay is kept.

In our framework, we aim to classify the cohort by the

treatment given as well as the response level calculated in the

data-driven approach illustrated in the pseudo-code below.

The responder score construction is inspired by [17]. We

first obtained a refined cohort using 1-1 propensity score

matching and obtained 1456 patients. For the treatment and

control group, we estimated a Cox proportional hazards

model and obtained the log hazard ratio coefficients. As-

suming a common baseline hazard function, one can take

the difference between treatment and control coefficients

and obtain a patient-level response score to the treatment.

Depending on the practical need, one can choose a cutoff

point (here, we select cutoff = 0) if the response scores and

cluster the patients. Lastly, we obtain cluster-level outcome

rates.

Algorithm 1 Clustering by Treatment and Response and

Calculate Outcome Rates
Require: The sample space S with the following attributes

for each patient i:

1) Baseline covariates, Zi ∈ Rp

2) Propensity score, pi ∈ [0, 1]
3) Expenditure level (treatment-control indicator),

ei ∈ {0, 1}
4) Death in days, ti ∈ Z+

1: 1-1 PS matching based on pi for every ei = 1 from S
and obtain refined cohort S′

2: For both treatment and control group in S′, fit two

separate Cox models

log(h0(t)) = log(h00(t))

+ (β10Z1 + β20Z2 + . . .+ βp0Zp)

log(h1(t)) = log(h01(t))

+ (β11Z1 + β21Z2 + . . .+ βp1Zp)

3: for each i in S′ do
4: Compute D(Zi) = (β11 − β10)Zi1f + . . . + (βp1 −

βp0)Zip

5: end for
6: for each combination of k and (r, e) ∈ {0, 1}2 do
7: Extract outcome rates estimate:

π̂r,e =

∑
ei=e , D(Zi)+=r f(ti)∑

i∈S′ 1(ei = e and D(Zi)+ = r)

Where (·)+ = max(·, 0) and f(·) is a criteria in-

dicator function that checks outcome (e.g., f(ti) =
1(ti < losi) checks if a patient dies before discharge

by length of stay in ICU).

8: end for
9: return π̂r,e for each group (r, e)

The response scores estimated from the algorithm are

shown in Fig. 1. The distributions show that the monitoring

assignment is not strongly related to the responsiveness of the



patients. This lack of reference allows for better expenditure

allocation utilizing the information and incentivizes desirable

actions. The estimation results of the parameters are shown

in Table I.

Fig. 1. Response Scores Distribution

TABLE I

OUTCOME PROBABILITIES BY EXPENDITURE AND RESPONDER STATUS

π̂ Estimates
π̂00 0.51
π̂01 0.75
π̂10 0.66
π̂11 0.85

For estimation of F , we cite [23], where “the average

cost fluctuates between C7,600 and C9,000 per hospital-

ization”, and F = 1 is the normalization of this cost at

around $10,000. For the estimation of γ, we estimate it as

the proportion of good responder patients with a positive

response score in our dataset. γ̂ = (335+309)/1456 = 0.44.
The above estimates satisfy all model parameter assump-

tions for the non-negative payment model. From the analysis

in Sect. IV, if we choose an optimal policy that has the

largest incentive gap, the optimal payment is given by p00 =
0, p01 = 0, p10 = 0, p11 = 1

π̂11
= 1

0.85 ≈ 1.18 with incentive

gap v2 = 1− π̂01

π̂11
= 1− 0.75

0.85 = 0.12 and an objective value

γ̂ = 0.44. Recall that with normalized F = 1, these numbers

should be understood as percentages relative to actual values

of F , in our case roughly $10, 000. Therefore, the payment

for high expenditure spending with desirable outcome should

be $10, 000×1.18 = $11, 800 and obtain a $10, 000×0.12 =
$1, 200 monetary incentive gap for exerting low expenditure

with unfavorable outcomes. This will achieve an optimal

expected payment of $10, 000× 0.44 = $4, 400.
We compare the proposed optimal contract in compari-

son with two other extreme policies in Fig.2 where pure

conservative and pure aggressive treatment practices are

implemented.
In the optimal payment plan, where only patients di-

agnosed with a positive response score get treated, it

achieves a 64% survival rate with a 0.55 payment in-

vestment. Compared to “pure high expenditure” with 83%

Fig. 2. Simluation Comparison with Extreme Policies

survival rate with 0.94 payment, our policy achieves both

higher average outcome-rate/payment ratio ( 0.640.55 > 0.83
0.94 ) as

well as marginal outcome-rate/payment ratio when bench-

marked against “pure low expenditure” policy ( 0.64−0.35
0.55 >

0.83−0.35
0.94 ), which proves its better cost-effectiveness.

V. CONCLUSION

Optimal contracts have been designed across three dif-

ferent models to ensure that payment structures incentivize

providers to increase expenditure for good responders while

encouraging reduced expenditure for poor responders. Nu-

merical simulation utilizing MIMIC-IV data on ICP monitor-

ing for TBI patients was used to evaluate a new policy. When

healthcare providers are generally risk averse, our results

show that in this case, the optimal contract is such that the

risk aversion leads to a situation where the providers demand

to be compensated when they produce high expenditures,

regardless of the outcome. This means it is impossible to

incentivize providers to induce low expenditures for bad-

responding patients.
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