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Abstract: By de�nition, reciprocal matrices are tridiagonal n-by-n matrices A with constant main diagonal
and such that ai,i+1ai+1,i = 1 for i = 1, . . . , n − 1. We establish some properties of the numerical range gen-
erating curves C(A) (also called Kippenhahn curves) of such matrices, in particular concerning the location
of their elliptical components. For n ≤ 6, in particular, we describe completely the cases when C(A) consist
entirely of ellipses. As a corollary, we also provide a complete description of higher rank numerical ranges
when these criteria are met.
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1 Introduction
Denote by Mn the algebra of all n-by-n matrices with complex entries. For any A ∈ Mn, we will use the
standard notation ReA = (A + A∗)/2, ImA = (A − A∗)/(2i). Letting

λ1(θ) ≥ . . . ≥ λn(θ) (1.1)

stand for the eigenvalues (counting theirmultiplicities) of the hermitianmatrixRe(eiθA), introduce the family
of lines

`j(θ) = e−iθ(λj(θ) + iR), θ ∈ [0, 2π), j = 1, . . . , n, (1.2)

and the respective family of half-planes Hj(θ) = {z ∈ C : Re(eiθz) ≤ λj(θ)} bounded by `j(θ). For every k =
1, . . . , n the intersection

Λk(A) = ∩θ∈[0,2π)Hk(θ) (1.3)

is nothing but the rank-k numerical range of A introduced in [5] as

Λk(A) = {λ ∈ C : PAP = λP for some rank-k orthogonal projection P}. (1.4)

Obviously,
Λ1(A) ⊇ Λ2(A) ⊇ . . . ⊇ Λn(A). (1.5)

Note that Λ1(A) is the regular numerical range W(A) of A, and the respective formula (1.3) is an immediate
consequence of its convexity (the celebrated Toeplitz-Hausdor� theorem, see e.g. [7]). For k > 1, however,
(1.3) is a more recent result [10]. It implies the convexity of all Λk(A) — the result conjectured in [5, Problem
2.9] and established independently in [11].
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Due to (1.3), all the setsΛk(A) are de�ned completely by the envelope C(A)of the family (1.2). In particular,
W(A) is the convex hull of C(A), as was observed as early as in [8] (see [9] for the English translation). Called
the “boundary generating curve” in [8], in the recent years C(A) was renamed as Kippenhahn curve — the
term which we will be using in what follows.

Along the same lines (no pun intended), the family (1.2) is de�ned by (1.1), and thus by the characteristic
polynomial

P(λ, θ) = det(Re(eiθA) − λI) (1.6)

of Re(eiθA); the latter is therefore called the Kippenhahn polynomial of A.
A vast number of papers is devoted to singling out classes ofmatricesAwithW(A)being an elliptical disk,

the convex hull of several ellipses, or at least having an elliptical arc as part of its boundary ∂W(A). Similar
questions can be asked about higher rank numerical ranges. In terms of Kippenhahn curves, this boils down
to the following: when does C(A) contain an ellipse E as one of its components (or, more restrictively, consists
of several ellipses)?

In [2] this question was addressed for so called reciprocal matrices of small (up to n = 6) sizes, provided
that the ellipse E is centered at the origin. This condition on E is lifted here. Also, the higher rank numerical
ranges of the respective matrices A are described.

2 General observations
The classical Elliptical Range Theorem claims that the numerical range W(A) of A ∈ M2 is an elliptical disk
with the foci at the eigenvalues ζ1, ζ2 of A and the minor axis of the length 2c :=

√
‖A‖2Fr − |ζ1|

2 − |ζ2|2 (here
‖A‖Fr denotes the Frobenius norm of A). Note that c = 0 if and only if A is normal, and thenW(A) degenerates
into the line segment [ζ1, ζ2].

The n = 2 case is exceptional in a sense that W(A) de�nes A up to a unitary similarity and, when put

in an upper-triangular form, it becomes A =
[
ζ1 2c
0 ζ2

]
. A direct computation shows that the Kippenhahn

polynomial of this matrix is

PE = (λ − p cos(θ) + q sin(θ))2 − (x cos(2θ) − y sin(2θ) + z), (2.1)

where
p = 1

2 Re(ζ1 + ζ2),

q = 1
2 Im(ζ1 + ζ2),

x = 1
8 Re

(
(ζ1 − ζ2)2

)
,

y = 1
4 Re(ζ1 − ζ2) Im(ζ1 − ζ2),

z = 1
8 |ζ1 − ζ2|

2 + c2.

(2.2)

The third and the fourth equations of (2.2) imply that
√
x2 + y2 = 1

8 |ζ1 − ζ2|
2 and so, invoking the �fth:

c2 = z −
√
x2 + y2. (2.3)

In particular,
z ≥
√
x2 + y2, (2.4)

and the equality holds if and only if the quadratic polynomial (2.1) factors into the product of two linear ones.
The ellipse C(A) then collapses into the doubleton {ζ1, ζ2} of its foci.

Turning to matrices of arbitrary size, we therefore have
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Proposition 1. Let A ∈ Mn. Then C(A) contains an ellipse E if and only if the Kippenhahn polynomial (1.6)
of A is divisible by (2.1) for some p, q, x, y ∈ R and z ∈ R+ satisfying (2.4). If this condition holds, then E is
centered at (p, q), the length of its minor half-axis c is given by (2.3), and the di�erence between the foci is
2
√
2
(
x2 + y2

) 1
4 exp

(
i
(
tan−1

(
y/x
)
/2
))

.

Proposition 1 is not new; its particular case corresponding to the ellipticity criterion for W(A) in terms of an
explicit formula for λ1(θ) is [4, Theorem 1]. In slightly di�erent notation, and without specifying the minor
axis and foci of E, it was also used in [6]. We chose to state it in a detailed form for convenience of reference.

Following [2], we say that a matrix A = (aij)ni,j=1 is reciprocal if it is tridiagonal with constant main diago-
nal, i.e. aij = 0 whenever |i − j| > 1, while

a11 = . . . = ann := a and ai,i+1ai+1,i = 1 for i = 1, . . . , n − 1. (2.5)

In what follows, we will denote by RMn the class of all reciprocal matrices A ∈ Mn with a = 0. The latter
condition is just a technicality, and it is being imposed only for convenience. Propositions 4,8, Lemmas 1,2,
Theorems 5,7, and Corollaries 1,3,4 hold exactly as stated for any value of a. All other results of Sections 2–4
can easily be adjusted to arbitrary a based on the simple observation C(A + cI) = C(A) + c.

For reciprocal A, all thematrices Re(eiθA) are also tridiagonal with a constant main diagonal. This obser-
vation was used in [2, Proposition 4] to conclude that Kippenhahn polynomials of A ∈ RMn can be written
as

Pn(ζ , τ) = ζ k +
k−1∑
j=0

pj(τ)ζ j ,

premultiplied by −λ if n is odd. Here ζ = λ2, k = bn/2c, and pj are polynomias of degree k − j in τ := cos(2θ)
with the coe�cients depending only on

Aj :=
∣∣aj,j+1∣∣2 + ∣∣aj+1,j∣∣2

2 , j = 1, . . . , n − 1. (2.6)

Respectively, C(A) is symmetric about both coordinate axes [2, Corollary 2], for odd n including the origin as
one of its components.

In this paper, we �nd it more convenient to represent Pn as

Pn(ζ , ρ) = ζ k +
k−1∑
j=0

p̃j(ρ)ζ j , (2.7)

with the variable τ replaced by ρ := cos2 θ
(
= (1 + τ)/2

)
and the coe�cients of p̃j expressed in terms of

ξj :=
(
∣∣aj,j+1∣∣ − ∣∣aj+1,j∣∣)2

4

(
=
Aj − 1
2

)
, j = 1, . . . , n − 1. (2.8)

Note that ξj ≥ 0, and the equality holds if and only if
∣∣aj,j+1∣∣ (equivalently, Aj, or ∣∣aj+1,j∣∣) is equal to one.

Proposition 2. Suppose the Kippenhahn curve C(A) of a reciprocal matrix A contains an ellipse E. Then (i) the
foci of E are real, and (ii) either E is centered at the origin, or its re�ection −E is also contained in C(A).

Proof. Part (ii) follows immediately from the symmetry of C(A). To prove (i), recall that for any square matrix
the foci of its Kippenhahn curve coincide with its spectrum [9, Theorem 11]. If A is reciprocal, it is similar (not
unitarily similar!) to the Toeplitz tridiagonalmatrix T, as was observed in [2, Proposition 5] by the anonymous
referee’s suggestion. Consequently, for any A ∈ RMn its spectrum

σ(A) = σ(T) =
{
2 cos jπ

n + 1 : j = 1, . . . , n
}

(2.9)

is real. The foci of E lie in the set (2.9), and as such are also real.
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Corollary 1. For any A ∈ RMn, rank-k numerical ranges with k > (n + 1)/2 are empty.

Proof. Indeed, Λk(A) for k > n/2 can only be a singleton coinciding with an eigenvalue of A of multiplicity at
least 2k − n [5, Proposition 2.2], and (2.9) implies that all the eigenvalues of A are simple.

According to Proposition 2(i), for an ellipse E ⊂ C(A) in case of reciprocal A we have q = y = 0, with the rest
of formulas (2.2) thus simplifying to

p = 1
2(ζ1 + ζ2), x =

1
8(ζ1 − ζ2)

2, z = x + c2. (2.10)

Proposition 1 for reciprocal matrices can therefore be recast as follows.

Proposition 3. Let A ∈ RMn. Then C(A) contains an ellipse with the half-axes of length c and
√
c2 + X2 if and

only if polynomial (2.7) is divisible either (a) by ζ − (X2ρ + c2), or (b) by

ζ 2 − 2ζ
(
(X2 + p2)ρ + c2

)
+
(
(X2 − p2)ρ + c2

)2
. (2.11)

Case (a) corresponds to an ellipse centered at the origin. In case (b) there are two symmetric ellipses ±E con-
tained in C(A) by Proposition 2(ii); ±p denote their centers. Formula (2.11) is obtained by multiplying out the
respective polynomials P±E = (λ ∓ p cos θ)2 − (x cos(2θ) + z); in both cases we relabeled 2x =: X2.

There is another important consequence of Re(eiθA) being tridiagonal hermitian matrices. According to
[3, Corollary 7], such matrices can have a repeated eigenvalue only if they split into the direct sum of two
blocks sharing this eigenvalue. Due to (2.5), in our setting this can only happen if θ = π/2 mod π and Ak = 1
(equivalently: ξk = 0) for some k.

Proposition 4. For a reciprocal matrix A, the multiple tangent lines of C(A) can only be horizontal. Such lines
materialize if and only if ξk = 0 for some k, and the spectra of the left upper k-by-k and the right lower (n − k)-
by-(n − k) block of the matrix K = ImA overlap.

Proof. We just need to recall that tangent lines to C(A) form the family (1.2).

Due to the symmetry of C(A), its multiple tangent lines, if any, come in pairs symetric with respect to the
abscissa axis. Their ordinates are the multiple eigenvalues of ImA.

Note that the presence of an ellipse E ⊂ C(A) centered at p ≠ 0 implies the existence of lines tangent to
both E and −E. Proposition 4 thus implies

Corollary 2. Let A ∈ RMn be such that C(A) contains an ellipse E with its center di�erent from the origin. Then
(i) E ∩ (−E) ≠ ∅ and (ii)

∣∣ak,k+1∣∣ = 1 (equivalently: ξk = 0) for some k ∈ {2, . . . , n − 2}, while the upper left
k-by-k block of ImA has a non-zero eigenvalue in common with its lower right (n − k)-by-(n − k) block.

Proof. Being congruent, the ellipses E and −E either intersect or lie outside of each other. In the latter case,
they would have a non-horizontal tangent in common which would contradict Proposition 4. This proves (i).

Part (ii) also follows from Proposition 4 as soon as we observe that a shared eigenvalue equal to zero
corresponds to E degenerating into the pair of its foci. If k = 1 or n − 1, one of the blocks of K is a one-
dimensional {0} and, as such, cannot generate a non-zero eigenvalue.

In contrast with Corollary 2(i), the concentric elliptical components of C(A), if any, have to be nested.

Corollary 3. Suppose the Kippenhahn curve of a reciprocal matrix A contains two concentric ellipses. Then one
of them has to lie inside the other.

Proof. The reason is exactly the same as in the proof of the previous result: the absence of non-horizontal
multiple tangents of C(A).
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In conclusion, note that reversing the order of rows and columns of a matrix is a unitary similarity which
preserves the reciprocal structure, while switching the super- and subdiagonal and reversing the order of
their entries. Therefore, the Kippenhahn polynomials and curves of reciprocal matrices are invariant under
the transformation

ξj ←→ ξn−j+1, j = 1, . . . , n − 1. (2.12)

This simple observation will prove itself useful in the next sections.

3 Reciprocal 4-by-4 and 5-by-5 matrices
Let us start with A ∈ M4. The Kippenhahn polynomial (1.6) of A then has degree four in λ. So, if a quadratic
polynomial can be factored out, the remaining multiple is also quadratic. In the language of Kippenhahn
curves it means that if C(A) contains an elliptical component, it actually consists of two ellipses.

If A ∈ RM4, Proposition 2(ii) implies in addition that the two ellipses in question are either both centered
at the origin, or are re�ections of each other through the origin (equivalently: across the ordinate axis).

According to (2.9) with n = 4:
σ(A) = {ϕ, ϕ−1, −ϕ, −ϕ−1}, (3.1)

where ϕ = (
√
5 + 1)/2 is the golden ratio, while (2.7) takes the form

P4(ζ , ρ) = ζ 2 − (ξ1 + ξ2 + ξ3 + 3ρ)ζ + (ξ1 + ρ)(ξ3 + ρ). (3.2)

In particular, the characteristic polynomial of ImA is

P4(λ2, 0) = λ4 − λ2(ξ1 + ξ2 + ξ3) + ξ1ξ3. (3.3)

Theorem 5. The Kippenhahn curve C(A) of A ∈ RM4 consists of two ellipses if and only if either

ξ2 = ϕξ1 − ϕ−1ξ3 or ξ2 = ϕξ3 − ϕ−1ξ1, (3.4)

with at least one of ξj being di�erent from zero, or

ξ2 = 0, ξ1 = ξ3 ≠ 0. (3.5)

Case (3.4) corresponds to ellipses centered at the origin, and the criterion (up to the notational change from Aj
to ξj) is [2, Theorem 8]. According to (3.1), one of the ellipses (say, E1) has foci ±ϕ while the foci of E2 then are
±ϕ−1. The lengths of theminor half-axes are determined by the positive roots of (3.3), and direct computations
yield

√
ξ1ϕ,

√
ξ3ϕ−1 or

√
ξ3ϕ,

√
ξ1ϕ−1, depending on which of the equalities holds in (3.4).

Note that the situation

ξ1 = 0, ξ2 = ϕξ3 = ̸ 0 or ξ3 = 0, ξ2 = ϕξ1 = ̸ 0 (3.6)

falls under (3.4) and is formally treated as two concentric ellipses, in spite of the fact that the inner one degen-
erates into the pair of its foci. Also, under condition (3.4) at least one of ξj being di�erent from zero implies
that only one of them can actually equal zero.

Criterion (3.5) (once again, up to the notational change from Aj to ξj) was derived in [6, Theorem 6.1] as a
corollary of a more general Theorem 5.1 on 4-by-4 matrices with scalar diagonal blocks. Here is a streamlined
reasoning, speci�c for the case at hand.

Necessity. Suppose C(A) = E1 ∪ E2 with E1,2 being symmetric images of each other. According to Corol-
lary 2, ξ2 = 0 and σ(ImA) consists of two opposite eigenvalues, each of multiplicity 2. From (3.3) we conclude
that ξ1 = ξ3.

Su�ciency. Let (3.5) hold. Denoting the common value of ξ1,3 by c2, it is easy to see that (3.2) can be
rewritten as (2.11) with p = 1/2 and X =

√
5/2. Proposition 3 then implies that E1 and E2 are congruent

ellipses with the foci ϕ, −ϕ−1 and −ϕ, ϕ−1, respectively, and c as the length of their minor half-axes. �
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Theorem5 immediately implies thatW(A) is the elliptical disk boundedby E1 if (3.4) holds, and conv{E1∪
E2} under condition (3.5). These results are also from [2] and [6], respectively.

Formulas (1.3) allow us to move further along the chain (1.5).

Corollary 4. Let A ∈ RM4 satisfy (3.4) or (3.5). Then Λ2(A) is the elliptical disk bounded by the inner ellipse
E2 in case (3.4), and the intersection of the elliptical disks bounded by E1 and E2 in case (3.5).

Note that Λ2(A) is the line segment [−ϕ−1, ϕ−1] in the extreme subcase (3.6) of (3.4). Observe that the mere
non-emptiness of Λ2(A) is obvious under (3.4), and follows from Corollary 2(ii) under (3.5).

On the other hand, for A ∈ RM4 we have Λ3(A) = Λ4(A) = ∅ by Corollary 1.
We now move to n = 5. The Kippenhahn polynomial of A ∈ RM5 is a product of −λ by

P5(ζ , ρ) = ζ 2 − (ξ1 + ξ2 + ξ3 + ξ4 + 4ρ)ζ + (ξ1 + ρ)(ξ3 + ρ)
+ (ξ1 + ρ)(ξ4 + ρ) + (ξ2 + ρ)(ξ4 + ρ).

(3.7)

Qualitatevely, (3.7) is similar to (3.2), implying that in our current setting again C(A) contains two ellipses as
soon as it contains at least one. Moreover, these ellipses are either both centered at the origin (which for n = 5
is the third component of C(A)), or are re�ections of each other through the ordinate axis. The foci of these
ellipses are located at the non-zero points of σ(A), which are ±

√
3, ±1.

According to [2, Theorem 9], for two concentric ellipses to materialize it is necessary and su�cient that

ξ1 = ξ4 or ξ1 − ξ4 = 2(ξ3 − ξ2), (3.8)

with not all of ξj equal zero. Note that due to (3.8) at least two of ξj are then di�erent from zero. Computing
the roots of (3.7) with ρ = 0, we �nd that under either of equalities (3.8) the lengths of the minor half-axes of
the ellipses are √

(ξ1 + ξ4)/2 and
√
ξ2 + ξ3 + (ξ1 + ξ4)/2.

By Corollary 3, they correspond to the ellipses with their foci at ±1 and ±
√
3, respectively. The inner ellipse

degenerates if and only if ξ1 = ξ4 = 0.
Passing to the case of displaced ellipses, let us �rst derive the criterion for C(A) to have multiple tangent

lines.

Lemma 1. A matrix A ∈ RM5 has the Kippenhahn curve with multiple tangent lines if and only if

ξ1 + ξ2 = ξ3 + ξ4 = ̸ 0 while ξ2ξ3 = 0. (3.9)

Proof. By Proposition 4, only horizontal multiple tangent line are possible, and ξ2ξ3 = 0 is a necessary con-
dition for them to materialize. Due to the invariance of (3.9) under (2.12), we may without loss of generality
suppose that ξ2 = 0 and concentrate on showing that then

ξ1 = ξ3 + ξ4 (= ̸ 0) (3.10)

is the desired criterion.
Condition ξ2 = 0 implies that ImA = B1 ⊕ B2, where

B1 =
[
0 η1
η1 0

]
, B2 =

 0 η3 0
η3 0 η4
0 η4 0

 , and ηj =
aj − 1/aj

2i . (3.11)

The remaining part of the requirements of Proposition 4 is that the spectra of B1 and B2 overlap; in other
words, |η1|2 = |η3|2 + |η4|2. Since

∣∣ηj∣∣2 = ξj, the necessity is proven. The case ξ1 = 0 has to be excluded,
because otherwise C(A) degenerates into σ(A).

The su�ciency can be demonstrated via a straightforward computation. Since the blocks B1, B2 are ad-
jacent, it also follows from the result of [3, Theorem 10] applicable to arbitrary tridiagonal matrices.
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Note that themultiple eigenvalues of ImA are in fact itsmaximal andminimal ones. So, thehorizontal tangent
lines of C(A) are the supporting lines ofW(A). Lemma 1 therefore delivers the criterion for the numerical range
of a reciprocal 5-by-5 matrix to have �at portions on its boundary.

Theorem 6. The Kippenhahn curve of A ∈ RM5 contains two non-concentric ellipses if and only if

ξ2ξ3 = 0, ξ2 + ξ3 ≠ 0, ξ1 =
√
3
2 (ξ2 + ξ3) + ξ3, ξ4 =

√
3
2 (ξ2 + ξ3) + ξ2. (3.12)

If this is the case, then C(A) = E1 ∪ E2 ∪{0}, with
√
3, −1 and −

√
3, 1 being the foci of E1 and E2, respectively,

and the length of the minor axis for both equals (1 +
√
3)
√
ξ2 + ξ3.

Proof. Conditions of Lemma 1 are necessary for C(A) to contain non-concentric ellipses, so we may suppose
that (3.9) holds. Invoking the symmetry under (2.12), we may suppose further that ξ2 = 0 and (3.10) holds,
while (3.12) simpli�es to

ξ2 = 0, ξ3 ≠ 0, ξ1 =
2 +
√
3

2 ξ3, ξ4 =
√
3
2 ξ3. (3.13)

Polynomial (3.7) in turn takes the form

ζ 2 − 2(ξ1 + 2ρ)ζ + (ξ1 + ρ)(ξ1 + 2ρ) + ρ(ξ4 + ρ),

which equals (2.11) if and only if
ξ1 = c2, (3.14)

X2 + p2 = 2, (X2 − p2)2 = 3, (3.15)

and
2c2(X2 − p2) = 3ξ1 + ξ4. (3.16)

From (3.16) it follows that X2 − p2 > 0, and so (3.15) is equivalent to

X =
√
3 + 1
2 , p =

√
3 − 1
2 .

Solving (3.10), (3.16) for ξ1, ξ4 gives (3.13). It remains to invoke Proposition 3 to prove the criterion. The centers
of E1,2 are located at ±p, which uniquely determines their foci, and (3.14) combined with (3.13) yields the
formula for the length 2c of the minor axis.

Description of Λ2(A) for n = 5 is very similar to Corollary 4. Namely:

Corollary 5. Let A ∈ RM5 satisfy (3.8) or (3.12). Then Λ2(A) is the elliptical disk with the foci ±1 and the minor
axis of the length

√
2(ξ1 + ξ4) in the former case, and the intersection of the elliptical disks bounded by E1, E2

described in Theorem 6 in the latter.

As opposed to the case n = 4, for n = 5 we have Λ3(A) = {0}, not the empty set. On the other hand, Λ4(A) is
still empty by Corollary 1.

Finally, observe that (3.10) may hold while (3.12) does not. This means that the numerical range W(A)
of a reciprocal 5-by-5 matrix may have �at portions on its boundary while the smooth arcs connecting these
(horizontal) �at portions are not elliptical. The proof of the criterion (3.5) outlined on p. 8 shows that for n = 4
this is an impossibility.

To illustrate, consider A ∈ RM5 with

ξ1 = ξ3 = 0.5, ξ2 = ξ4 = 0. (3.17)

Conditions (3.9) hold for this A, while (3.13) fail. The Kippenhahn curve C(A) consists of the two non-elliptical
(“drop-shaped”) symmetric curves D, −D, and the origin. Note that qualitatively the structure of the rank-k
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numerical ranges of A is the same as in Corollary 5: Λ1(A) = conv{D ∪ (−D)}, Λ2(A) = (convD) ∩ (conv(−D)),
and Λ3(A) = {0}.

Figure 1: Example of C(A) with non-elliptical components, n = 5

Observe also that under condition (3.17) A is what in [1] was called a 2-periodic reciprocal matrix. Such
matrices of dimension n = 1 mod 4 (in particular, n = 5) have no elliptical components in C(A) according to
[1, Theorem 5].

To conclude this section, here is an example of C(A) for a matrix A satisfying conditions of Theorem 6. It
consist of the origin and a pair of displaced ellipses. The rank-2 numerical range is the intersection of the two
elliptical discs.

Figure 2: Example of C(A) with elliptical components, n = 5

{ξi} = {1 +
√
3/2, 0, 1,

√
3/2}

4 Reciprocal 6-by-6 matrices
The Kippenhahn polynomial of A ∈ RM6 is

P6(ζ , ρ) = ζ 3 − (ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + 5ρ)ζ 2

+
(∑

j−i>1 ξiξj + (3(ξ1 + ξ5) + 2(ξ2 + ξ3 + ξ4))ρ + 6ρ
2
)
ζ

− (ξ1 + ρ)(ξ3 + ρ)(ξ5 + ρ). (4.1)

In contrast with the n = 4, 5 cases, Proposition 1 implies that C(A) may contain both elliptical and non-
elliptical components. When this happens, the ellipse contained in C(A) is necessarily centered at the origin,
and the respective criterion is delivered by [2, Theorem 10]. On the other hand, if C(A) contains two ellipses,
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then it is in fact the union of three ellipses, either all centered at the origin, or one centered at the origin and
two symmetric through the ordinate axis. The former case is described by [2, Theorem 11], and in our notation
(after some additional manipulations) can be restated as follows.

Theorem 7. Let A ∈ RM6. Then for C(A) to consist of three concentric ellipses it is necessary and su�cient
that

2ξ21 + 4ξ2ξ1 − 2ξ3ξ1 − 3ξ4ξ1 − 3ξ5ξ1 + ξ22 + ξ24 + 2ξ25 + 2ξ2ξ3
− 5ξ2ξ4 + 2ξ3ξ4 − 3ξ2ξ5 − 2ξ3ξ5 + 4ξ4ξ5 = 0,
2ξ21 + ξ2ξ1 − 3ξ3ξ1 + ξ4ξ1 − 3ξ5ξ1 − ξ22 + ξ23 − ξ24 + 2ξ25
+ 2ξ2ξ3 − 2ξ2ξ4 + 2ξ3ξ4 + ξ2ξ5 − 3ξ3ξ5 + ξ4ξ5 = 0,
ξ31 + 2ξ2ξ21 + 4ξ3ξ21 + 2ξ4ξ21 + 3ξ5ξ21 − ξ22 ξ1 + 3ξ23 ξ1 − ξ24 ξ1
+ 3ξ25 ξ1 + 3ξ2ξ3ξ1 − 2ξ2ξ4ξ1 + 3ξ3ξ4ξ1 + 4ξ2ξ5ξ1 − 41ξ3ξ5ξ1
+ 4ξ4ξ5ξ1 − ξ32 − ξ33 − ξ34 + ξ35 + 2ξ2ξ23 − 3ξ2ξ24 + ξ3ξ24
+ 2ξ2ξ25 + 4ξ3ξ25 + 2ξ4ξ25 + ξ22 ξ3 − 3ξ22 ξ4 + 2ξ23 ξ4 + 2ξ2ξ3ξ4
− ξ22 ξ5 + 3ξ23 ξ5 − ξ24 ξ5 + 3ξ2ξ3ξ5 − 2ξ2ξ4ξ5 + 3ξ3ξ4ξ5 = 0,

(4.2)

where ξj are de�ned by (2.8).

With conditions (4.2) satis�ed, C(A) = ∪3j=1Ej, where according to (2.9) Ej is an ellipse with the foci ±2 cos jπ7 .
The lengths of the minor half-axes of Ej are the positive eigenvalues of ImA, i.e., positive roots cj of

P6(λ2, 0) = λ6 − λ4
5∑
j=1

ξj + λ2
∏
j−i>1 ξiξj − ξ1ξ3ξ5. (4.3)

Proposition 8. In the setting of Theorem 7, the lengths of the axes of Ej agree with the distances between their
foci: c1 ≥ c2 ≥ c3.

Proof. Let A(t) be a reciprocal matrix obtained from A by replacing its parameters ξi with tξi (t > 0), i =
1, . . . , 5. Since conditions (4.2) are homogeneous, all the matrices A(t)will satisfy them along with A, and so
C(A(t)) = ∪3j=1Ej(t). Moreover, the polynomial (4.3) is homogeneous in λ2, ξj, and so the multiset {cj(t)}3j=1 of
its roots is simply {

√
tcj}3j=1.

The foci of ellipses Ej(t) do not depend on t while their minor axes depend on
√
t linearly. Observe that

the line segment Ij := [−2 cos jπ7 , 2 cos
jπ
7 ] connecting the foci of Ej(t) lies inside it. On the other hand, Ej(t)

lies in an arbitrarily small neighborhood of Ij provided that t is chosen small enough. So, for such t the ellipse
E3(t) lies inside E2(t)which, in turn, lies inside E1(t). Consequently, c1(t) ≥ c2(t) ≥ c3(t) for small t. But then
the inequalities persist for all t, since the ellipses Ej(t) remain nested for all t by Corollary 3, and so their
ordering cannot change. Setting t = 1 completes the proof.

Corollary 6. Let A be a reciprocal matrix satisfying (4.2). Denote by Ej the ellipse with the foci ±2 cos jπ7 and
the length of its minor half-axis equal the jth (in the non-increasing order) eigenvalue of ImA, j = 1, 2, 3. Then
Λj(A) is the elliptical disk bounded by Ej.

We now turn to the case of non-concentric ellipses. As in Section 3, we �rst need to �gure out when C(A)
admits multiple tangent lines.

Lemma 2. A matrix A ∈ RM6 has the Kippenhahn curve with multiple tangent lines if and only if one of the
following (mutually exclusive) conditions holds:
(i) ξ1ξ3ξ5 = 0,
(ii) ξ2 = ξ4 = 0 while ξ1, ξ3, ξ5 = ̸ 0 are not all distinct,
(iii) ξ2 = 0, ξ1ξ3ξ4ξ5 ≠ 0, and

ξ1ξ4 = (ξ1 − ξ5)(ξ1 − ξ3), (4.4)
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(iv) ξ4 = 0, ξ1ξ2ξ3ξ5 ≠ 0, and
ξ2ξ5 = (ξ1 − ξ5)(ξ3 − ξ5). (4.5)

Proof. By Proposition 4, for multiple tangent lines to exist it is necessary that at least one ξj is equal to zero.
So, we just need to consider each of the following situations separately.

Case 1. ξ1ξ3ξ5 = 0. Then ImA splits into the direct sum of at least two diagonal blocks each of which
is singular. So, 0 is a multiple eigenvalue, and the abscissa axis is a multiple tangent line. No additional
conditions on ξj arise in this case.

Case 2. ξ1ξ3ξ5 = ̸ 0, ξ2 = ξ4 = 0. The matrix ImA is the direct sum of three 2-by-2 blocks, with the
eigenvalues ±

√
ξj (j = 1, 3, 5), respectively. So, ImA has multiple eigenvalues if and only if ξ1, ξ3, ξ5 are not

all distinct, and (ii) follows.
Case 3. ξ1ξ3ξ5 = ̸ 0, and exactly one of ξ2, ξ4 is equal to zero. Conditions (iii) and (iv) interchange under

(2.12), and so we may without loss of generality suppose that ξ2 = 0, ξ4 ≠ 0.
Similar to (3.11) (and with the same notation ηj) we have ImA = B1 ⊕ B3, where

B1 =
[
0 η1
η1 0

]
, B3 =


0 η3 0 0
η3 0 η4 0
0 η4 0 η5
0 0 η5 0

 .
Since η3η4η5 = ̸ 0 along with ξ3ξ4ξ5, the eigenvalues of B3 are simple. In order for ImA to have multiple
eigenvalues it is therefore necessary and su�cient that the characteristic polynomial ζ − ξ1 of B1 divides the
characteristic polynomial p(ζ ) = ζ 2 − (ξ3 + ξ4 + ξ5)ζ + ξ3ξ5 of B3. In other words, p(ξ1) = 0, which is exactly
(4.4). This takes care of (iii) and, after invoking (2.12), also (iv).

Theorem 9. Let A ∈ RM6. Then C(A) consists of three ellipses exactly one of which is centered at the origin if
and only if one of the following conditions holds:

ξ2 = ξ4 = 2ξ1 cos
2π
7 , ξ3 = 0, ξ5 = ξ1, (4.6)

ξ3 = ξ5 = kξ1, ξ2 = 0, ξ4 = (k − 1)2ξ1, (4.7)

or
ξ1 = ξ3 = kξ5, ξ2 = (k − 1)2ξ5, ξ4 = 0, (4.8)

with the coe�cient k in (4.7),(4.8) taking the values 2 cos π7 , 2 cos
3π
7 .

Proof. By Proposition 3,
C(A) = E0 ∪ E ∪ (−E), (4.9)

where E0 (resp., E) is an ellipse centered at the origin (resp., some p > 0) if and only if the polynomial (4.1)
factors as (

ζ −
(
c20 + ρX20

))(
ζ 2 − 2ζ

(
c2 + ρ

(
p2 + X2

))
+
(
c2 + ρ

(
X2 − p2

))2)
. (4.10)

Recall also that X0 and c0 (X and c) are half the distance between the foci and half the length of the minor
axis of E0 (resp. E).

Equating the respective coe�cients of (4.1) and (4.10), we arrive at the system of nine equations which
for our purposes is convenient to group into three subsystems (4.11)–(4.13), with three equations in each:

X20(X2 − p2)2 = 1
(X2 − p2)2 + 2X20(X2 + p2) = 6
X20 + 2(X2 + p2) = 5,

(4.11)
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ξ1ξ3ξ5 = c4c20
ξ1 + ξ2 + ξ3 + ξ4 + ξ5 = 2c2 + c20
ξ1ξ3 + ξ1ξ4 + ξ2ξ4 + ξ1ξ5 + ξ2ξ5 + ξ3ξ5 = 2c2c20 + c4,

(4.12)


ξ1ξ3 + ξ1ξ5 + ξ3ξ5 = c4X20 + 2c2c20(X2 − p2)
ξ1 + ξ3 + ξ5 = 2c2X20(X2 − p2) + c20(X2 − p2)2

3(ξ1 + ξ5) + 2(ξ2 + ξ3 + ξ4) = 2c2(X20 + X2 − p2) + 2c20(X2 + p2).

(4.13)

The �rst of them, (4.11), contains only the variables X0, X, p, with X0 necessarily taking one of the three values
2 cos(jπ/7), j = 1, 2, 3. For each of these values of X0, (4.11) yields a unique choice of (X2 − p2)2 and X2 + p2.
Taken into consideration the invariance of these expressions inder the X ↔ p interchange and the positivity
of X, p, this determines an unordered pair {X, p} uniquely. As the result, (4.11) has exactly six solutions,
summarized in the table below:

X0 X p
(i) 2 cos π7 cos 2π

7 − cos
3π
7 cos 2π

7 + cos 3π
7

(ii) 2 cos π7 cos 2π
7 + cos 3π

7 cos 2π
7 − cos

3π
7

(iii) 2 cos 2π
7 cos π7 − cos

3π
7 cos π7 + cos

3π
7

(iv) 2 cos 2π
7 cos π7 + cos

3π
7 cos π7 − cos

3π
7

(v) 2 cos 3π
7 cos π7 − cos

2π
7 cos π7 + cos

2π
7

(vi) 2 cos 3π
7 cos π7 + cos

2π
7 cos π7 − cos

2π
7

Tomove forward, recall that Lemma 2 delivers necessary conditions for C(A) to be as in (4.9).Wewill therefore
consider separately Cases 1–3, as introduced in the proof of that Lemma.

Case 1. ξ1ξ3ξ5 = 0. Let �rst ξ3 = 0. Solving (4.12), we conclude that then either (a) c = 0, in which case
also ξ1 = ξ2 = 0 or ξ4 = ξ5 = 0, or (b) c0 = 0, ξ1 + ξ2 = ξ4 + ξ5 = c2. Subcase (a) is incompatible with all the
solutions of (4.13). In turn, under (b) system (4.13) is consistent if and only if X0, X, p are given by (vi), and
the solution is the one-parameter family (4.6).

Suppose now that ξ3 ≠ 0 but ξ1ξ5 = 0. Due to the symmetry (2.12), it su�ces to consider ξ5 = 0. From
(4.12) we then conclude that either

c = 0, ξ1 + ξ2 + ξ3 + ξ4 = c20(> 0), ξ1 = ξ2ξ4 = 0, (4.14)

or
c0 = 0, ξ1 + ξ2 + ξ3 + ξ4 = 2c2, ξ1ξ3 + ξ1ξ4 + ξ2ξ4 = c4. (4.15)

Plugging (4.14) into the last equation of (4.13) yields c20 = c20(X2 + p2). Since for all the solutions (i)–(vi) of
(4.11), X2 + p2 ≠ 1, this is an impossibility.

On the other hand, under condition (4.15) (and still assuming ξ5 = 0), the system (4.13) can be rewritten
as (

X20 − 1
)
ξ1ξ3 + X20 (ξ1ξ4 + ξ2ξ4) = 0,(

X20
(
X2 − p2

)
− 1
)
(ξ1 + ξ3) + X20

(
X2 − p2

)
(ξ2 + ξ4) = 0,(

X2 + X20 − p2 − 3
)
ξ1 +

(
X2 + X20 − p2 − 2

)
(ξ2 + ξ3 + ξ4) = 0.

(4.16)

Since in all the cases (i)–(vi) X2 + X20 − p2 ≠ 2, the third equation in (4.16) implies that ξ1 = ̸ 0. Then from
the �rst equation and the fact that X20 ≠ 1 we conclude that ξ4 ≠ 0. Given the non-negativity of ξi, therefore
the terms ξ1ξ3, ξ1ξ4 + ξ2ξ4, ξ1 + ξ3, ξ2 + ξ4, ξ1, ξ2 + ξ3 + ξ4 are all positive. Their coe�cients in each of the
equations (4.16) should therefore have alternating signs, implying

X20, X20
(
X2 − p2

)
, X2 + X20 − p2 − 2 ∈ (0, 1).
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This requirement excludes all but the (vi) case in the table. However, under (vi), we can observe that
X20
(
X2 − p2

)
= X2 + X20 − p2 − 2 = 2 sin

(
π/14

)
. The di�erence of the last two equations of (4.16) will leave us

with ξ3 = 0, which contradicts our standing assumption.
Case 2. ξ1ξ3ξ5 = ̸ 0, ξ2 = ξ4 = 0. Under these conditions, (4.12) means that {ξ1, ξ3, ξ5} and {c2, c2, c20}

coincide asmultisets. The �rst two equations of (4.13) can then be rewritten as the homogeneous system (with
respect to the unknowns c2, c20) with the matrix of coe�cients[

X20 − 1 2(X2 − p2 − 1)
2(X20(X2 − p2) − 1) (X2 − p2)2 − 1

]
.

A straightforward computation shows that this matrix is invertible for all the choices (i)–(vi) of solutions to
(4.11). This is a contradiction with ξj being di�erent from zero for j = 1, 3, 5. So, no solutions to (4.11)–(4.13)
emerge in this case.

Case 3. ξ1ξ3ξ5 ≠ 0, and exactly one of ξ2, ξ4 is equal to zero.
Let ξ2 = 0, ξ4 ≠ 0. As was shown in the respective part of the proof of Lemma 2, ξ1 is then the multiple

eigenvalue of ImA if and only if (4.4) holds. Under this condition we therefore have

c20 = ξ1, c2 = ξ3 + ξ4 + ξ5 − ξ1. (4.17)

Given ξ2 = 0 and (4.17), (4.12) is actually equivalent to (4.4). Yet another computation shows that (4.7) is the
solution of (4.13) satisfying also (4.4) and (4.11). More speci�cally, the solution with k = 2 cos 3π

7 corresponds
to X0, X, p given by (ii), k = 2 cos π7 corresponds to (vi), and (i), (iii)–(v) yield no solutions.

Invoking (2.12), we immediately conclude from here that (4.8) is the solution of (4.11)–(4.13) correspond-
ing to the case ξ2 ≠ 0, ξ4 = 0. We have exhausted all the possibilites, so the proof is now complete.

Retracing the proof of Theorem 9, a more detailed description of the con�guration (4.9) can be obtained.
Namely:

The length of the minor half-axis of ±E is
√
ξ1 + ξ2 (=

√
ξ4 + ξ5) in case (4.6),

√
ξ3 + ξ4 + ξ5 − ξ1 = k

√
ξ1

in case (4.7), and
√
ξ1 + ξ2 + ξ3 − ξ5 = k

√
ξ5 in case (4.8). For the “central” ellipse E0 the respective values

are 0 (so that in case (4.6) E0 degenerates into the doubleton of its foci),
√
ξ1 and

√
ξ5.

In the setting of (4.6), or (4.7), (4.8) with k = 2 cos 3π
7 , the foci of the “right” ellipse E are 2 cos π7 and

−2 cos 2π
7 , while E0 has the foci ±2 cos 3π

7 . On the other hand, for (4.7), (4.8) with k = 2 cos π7 , the foci of E are
2 cos 2π

7 and −2 cos 3π
7 , while E0 has the foci ±2 cos π7 .

Observe that E0 either lies inside the intersection of E with −E or contains their union. A moment’s
thought reveals that no other con�gurations are possible because of Proposition 4. Also, not only the ellipses
±E overlap (in agreement with part (i) of Corollary 2), but moreover, the sets of their foci interlace.

Based on the latter observation, as well as numerical experiments with reciprocalmatrices of higher size,
we believe the following holds true.

Conjecture 1. Let A ∈ RMn be such that C(A) contains an ellipse E. Then the foci of E (lying on the real line
due to Proposition 2(i)), have opposite signs.

Note that for E centered at the origin the statement holds in a trivial way.
Here are some numerical examples corresponding to each of the cases described above.
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Figure 3: Example of C(A) with degenerated central ellipse

{ξi} = {0.801938, 1., 0., 1., 0.801938}

Figure 4: Example of C(A) with inner central ellipse

{ξi} = {1.44504, 1., 1.44504, 0., 3.24698}

Figure 5: Example of C(A) with outer central ellipse
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{ξi} = {2.80194, 1., 2.80194, 0., 1.55496}

Based on the above description of C(A), we arrive at the following result concerning the rank-j numerical
ranges of A for j = 1, 2, 3 (note that Λj(A) = ∅ for j ≥ 4 due to Corollary 1).

Corollary 7. In the setting of of Theorem 9, the rank-j numerical ranges of A are as described by the following
table:

(4.6) or (4.7), (4.8) (4.7), (4.8)
with k = 2 cos 3π

7 with k = 2 cos π7
conv E0 Λ3 Λ1

conv(E ∪ −E) Λ1 Λ2
conv E ∩ conv(−E) Λ2 Λ3

Note that under condition (4.6) conv E0 is the line segment I3 while under (4.7) or (4.8) it is a non-degenerate
elliptical disk.
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