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Abstract— Accurately estimating the effects of continuous
treatment variables on binary outcomes is challenging. Tradi-
tional logistic regression models assume linearity and struggle
with dependencies among treatment effects and patient outcomes.
Such limitations hinder optimizing treatments, essential for
data-driven decision-making and its various applications (e.g.,
precision medicine). We introduce a semiparametric regression
model that blends the interpretability of parametric models with
the adaptability of nonparametric approaches, featuring a dual-
score system for assessing patient prognosis and determining
an optimal treatment level. We demonstrate the potential of
our approach by conducting numerical simulations that suggest
convergence occurs, and then we apply our approach to a
case study using the International Warfarin Pharmacogenomics
Consortium (IWPC) dataset.

I. INTRODUCTION

Addressing the challenge of estimating treatment effects,

especially with binary outcomes and continuous treatment

variables, requires models to provide accurate and explicable

estimates and account for treatment-covariate interactions.

While suitable for binary outcomes, traditional logistic regres-

sion techniques struggle with the causal relationship between

treatment and covariates. Machine learning techniques such

as neural networks can capture complex relationships but lack

transparency, limiting their clinical utility. Semiparametric

regression models offer a solution by blending nonparametric

methods’ adaptability with parametric models’ interpretability,

effectively addressing treatment effects on outcomes [1], [2].

Single index models exemplify this family of models [3].

The model takes the form E(Y |X) = g(ξTX) + ε, where

ξTX is the index, g(·) is an unknown function, and ε is the

noise. It has been applied in diverse fields such as economics,

environmental science, and healthcare [4], [5]. [6] used this

model to study optimizing treatment rules in clinical trials.

Moreover, a recent application to COVID-19 treatment [7]

used it to develop the “treatment benefit index” to guide

individualized treatment recommendations.

Regression models can incorporate continuous treatment

variables and offer nuanced insights into treatment-response

dynamics, which is crucial for optimizing treatments. Within

this context, [8] introduced a novel method to fine-tune person-

alized dosing strategies by optimizing a local approximation

of the value function through outcome-weighted learning.
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[9] presented a methodology for evaluating continuous treat-

ment policies, employing kernel-enhanced inverse probability

weighting and doubly robust techniques. Additionally, [10]

proposed a semiparametric change-plane model to identify

and analyze subgroups that exhibit variable treatment effects.

However, many existing methods often prioritize the

accuracy of estimating individualized dosing rules over

quantitative interpretability [11]. To achieve high accuracy,

they use complex statistical models that are elusive for

practitioners, which deters their utility in clinical diagnosis

[8]. Furthermore, some models cannot be extended to handle

classification tasks [12].

This paper introduces a model that leverages semiparamet-

ric regression to estimate treatment effects using a partially

linear model. This method considers the interaction effects

between covariates and a continuous treatment variable,

particularly in the setting of binary outcomes. Our method-

ology aims to balance the relationship between treatment

and outcome while emphasizing the interpretability crucial

for many applications such as clinical decision-making. An

overview of the proposed framework is shown in Fig. 1.

To summarize, our contributions are threefold:

1) We develop a partially linear model to estimate the

optimal individualized treatment strategies, preserving

quantitative interpretability.

2) We design a dual-score system: one score reflects

prognosis and the other offers a reference for an optimal

treatment, informed by the interplay among covariates.

3) We apply our method to an anticoagulation study, which

shows the potential of our approach for optimizing

Fig. 1. Overview of our proposed pipeline. During training, the model
learns β̂ and ξ̂ associated prognosis and treatment effectiveness, respectively.
During inference, as the prognostic score XT β̂ is fixed conditioning on
the patient’s attributes, we can directly visualize outcome density using a
heatmap with estimated ĝ. The optimal treatment value is then extrapolated
at the maximum point along the y-axis corresponding to a fixed XT ξ̂.



treatments based upon the model.

II. MODEL SETUP AND ESTIMATION

In many settings, a binary variable Y ∈ {0, 1} denotes

outcomes, X ∈ Rp represents predictive traits, and τ ∈ R
is a continuous treatment variable. Usually, τ is included as

an additional covariate in logistic regression models. How-

ever, since treatment allocation often correlates significantly

with other covariates, it’s crucial to develop a model that

captures the interaction between treatment and covariates and

remains interpretable in terms of diagnostic indices, similar

to traditional logistic regression.

A. Model Formulation

Given Y ∈ {0, 1}, X ∈ Rp, τ ∈ R, we consider the

following logistic regression model:

Pr(Y = 1|X, τ) = σ(XTβ + g(XT ξ − τ)) (1)

where σ(·) = 1
1+exp(·) is the logistic function, g(·) :

R → R is an unspecified function that models the effect

of the treatment, and β, ξ are learnable parameters. The

first linear score XTβ models the main linear effect based

on the baseline trait of a patient. The second linear score

XT ξ is a score that linearly interacts with the treatment

variable, where the difference XT ξ− τ term is the argument

of an unknown function g that encapsulates the covariates-

treatment interaction. Furthermore, we require that ξ ∈ {ξ ∈
Rp : ‖ξ‖2 = 1, ξ1 ≥ 0} for identifiable purposes due to the

unknown nature of the function g.

We consider the “odds ratio” (OR), a measure of association

between an exposure and an outcome, and obtain the

following:

log
Pr(Y = 1|X, τ)

Pr(Y = 0|X, τ)
= XTβ + g(XT ξ − τ), (2)

which reduces to a partially linear model with an unknown

nonlinear part.

In a practical application, the initial linear score XTβ high-

lights the patient’s pre-treatment condition and the subsequent

score XT ξ is analyzed in conjunction with the function g,

which accounts for the additive impact of the treatment. Given

data {Xi, Yi, τi}i=1,...,n, denote Ȳi = log Pr(Yi=1|Xi,τi)
Pr(Yi=0|Xi,τi)

,

Zi(ξ) = XT
i ξ − τi for a fixed ξ. Our partially linear model

becomes

Ȳi = XT
i β + g(Zi(ξ)) + ei, (3)

where ei is the error term with E(ei|Zi(ξ)) = 0.

B. Proposed Estimation

In the above formulation, it remains to estimate parameters

β, ξ and the unknown function g, which we denote as β̂, ξ̂,

and ĝ respectively.

Condition (3) on Zi(ξ), we obtain

E(Ȳi|Zi(ξ)) = E(XT
i β|Zi(ξ)) + g(Zi(ξ)). (4)

Taking the difference of (3) and (4), we obtain the following

least-squares regression:

eyi = eTxiβ + ei, (5)

where eyi = Ȳi − E(Ȳi|Zi(ξ)) and exi = Xi − E(Xi|Zi(ξ)).
Based on (5), we can estimate β by estimating the unknown

conditional means using the Nadaraya-Watson (NW) estimator

and obtain:

β̂ =

(
n∑
i

êxiê
T
xi

)−1 n∑
i

êxiê
T
yi, (6)

where

êxi = Xi −
∑n

j �=i Khi
(Zj(ξ)− Zi(ξ)) ·Xj∑n

j �=i Khi
(Zj(ξ)− Zi(ξ))

, (7)

êyi = Ȳi −
∑n

j �=i Khi
(Zj(ξ)− Zi(ξ)) · Ȳj∑n

j �=i Khi
(Zj(ξ)− Zi(ξ))

. (8)

Here, K(·) : R → R+ is any kernel function that satisfies∫
K(t)dt = 1,

∫
tK(t)dt = 0, and 0 <

∫
t2K(t)dt < ∞

and hi is the selected bandwidth.

An estimate of β̂ depends on a given ξ, so we first estimate

ξ̂ by minimizing residuals as follows:

ξ̂ = argmin
ξ

n∑
i

(ri(ξ))
2, (9)

where ri(ξ) = êyi − êTxiβ̂.

We then use the obtained ξ̂ to compute the corresponding

β̂ from (6). Finally, we estimate ĝ:

ĝ(Z) =

∑n
i Kh(Zi(ξ̂)− Z) · (Ȳi −XT

i β̂)∑n
i Kh(Zi(ξ̂)− Z)

. (10)

Furthermore, for applications in high-stakes fields, we

often want to trade off some predictive accuracy for better

interpretability via LASSO regularization [13]. Therefore, on

top of the constrained version of (9), we add a Lasso penalty

to ξ and optimize the following:

ξ̂ = argminξ

n∑
i

(ri(ξ))
2 + λ ‖ξ‖1 (11)

s.t. ‖ξ‖2 = 1, ξ1 > 0.

The bandwidth h and Lasso penalty λ are hyperparameters

tunable via cross-validation.

III. NUMERICAL SIMULATION STUDIES

In our simulation study, we designed four scenarios of

varying complexity. Table I summarizes the design for all

scenarios.

For scenarios 1 and 2, X are generated from a multivariate

Gaussian distribution with random mean μ and covariance

matrix Σ where μ ∼ Unif(−1, 1)p and Σ = AAT with

A ∼ Unif(0, 1)p×p. The treatment variable is generated

using a standard Gaussian distribution τ ∼ N (0, 1). For the

parameters, we simulate β ∼ Unif(−1, 1)4 and ξ ∼ Unif(Q1)
where Q1 denotes the first quadrant on the unit sphere. The



TABLE I

SETUP OF SIMULATED SCENARIOS.

Covariates Type Partially Linear Interaction Treatment-Covariates
Function Intervention Setting

Scenario 1 Continuous Ȳ = XT β + 3 Constant RCTs

Scenario 2 Continuous Ȳ = XT β + (XT ξ − τ) Linear RCTs

Scenario 3 Continuous Ȳ = XT β − 0.5 log(|XT ξ − τ |) Unimodal Observational

Scenario 4 Categorical & Continous Ȳ = XT β − 1.2cos(π ·XT ξ − τ) · e−(XT ξ−τ)2 Multimodal RCTs

Fig. 2. Convergence of the surface estimation. These heatmaps represent function value estimations with respect to the arguments XT β and XT ξ − τ
across varying sample sizes (from n = 10 to 104). The rightmost column of each series of heatmaps is the ground truth. We present a plot of the Mean
Squared Error (MSE) for each scenario as the accuracy metric for the density estimation, bootstrapped ten times for confidence interval.

treatment-covariate term is constant in scenario 1 and linear

in scenario 2. In scenario 1, the treatment assignment does

not affect the outcome. The linear term in scenario 2 implies

that the optimal treatment decision is always the extreme

point in the feasible region. In both scenarios, we let p = 8.

Scenario 3 simulates an observational setting in which

the treatment is influenced by the covariates. We simulate

the following covariates: X4 ∼ Unif(−1, 1) and X1 =√|X4| + Unif(−1, 1), X2 = 0.5 × X1 + Unif(−0.5, 0.5),
X3 = 0.3 × X1 + 0.3 × X2 + Unif(−0.4, 0.4) . For the

treatment, we have τ = sin(X2X3)+Unif(−0.6, 0.6), which

are influenced by covariates X2 and X3. Similarly, we

simulate β ∼ Unif(−1, 1)4 and ξ ∼ Unif(Q1). Lastly, we

have Ȳ = XTβ − 0.5 log(|XT ξ − τ |) which indicates that

there exists a unique optimal treatment given the covariates.

For scenario 4, we simulate our covariates as a mix-

ture of categorical and continuous variables in an RCTs

(Randomized Control Trials) setting. Let nc, nb denote the

number of continuous and binary variables. We simulate Xc ∼

N (μc,Σc) with μc ∈ Rnc ,Σc ∈ Snc
+ . For binary variables,

we simulate Xb[1] ∼ Bernoulli(p1) with p1 ∼ Unif(0, 1).
For i = 2, ..., nb, we simulate Xb[i] = Bernoulli(pi) with

pi = 1
1+exp(−(ai·Xb[i−1]+bi))

. The coefficients ai and bi
control the dependency on the previous random variable. We

generate τ ∼ Unif(−1, 1) independent of the covariates

for the treatment to resemble an RCT scenario. We set

nc = 12, nb = 8, ai = 0.5, bi = −0.25. The treatment-

covariates interaction term induces some multimodal locally

optimal treatment decisions, which can be seen in the heatmap

of scenario 4 in Fig. 2.

We estimated the model for each scenario using the

constrained optimization framework in (11). We used the

Tree-based Parzen Estimators (TPE) optimization algorithm

[14] within a defined search space for ξ ∈ Θ. Our findings

are illustrated in Fig. 2.

In scenario 1, the convergence towards the ground truth

is achieved swiftly, even with a limited number of training

samples. Notably, with n = 104, the estimated heatmap



accurately reflects the treatment’s non-influence, maintaining a

consistent scale along the y-axis. A similar swift convergence

is observed in scenario 2. Scenario 3 requires a larger sample

size to align with the ground truth. Starting from n = 103,

the estimation progressively discerns the unique optimal

treatment, as captured by the interaction term. Scenario 4

introduces increased dimensionality, more complex data types,

and a multimodal interaction term. The estimation necessitates

a larger number of samples to achieve empirical convergence

and discern this multimodality. For all scenarios, the MSE

and the variances drop with increasing sample sizes, and the

first three scenarios achieve significantly lower values than

scenario 4 due to lower dimensionality and problem complex-

ity. Moreover, our proposed estimation works empirically for

different data types as well as intervention settings.

IV. APPLICATION TO AN ANTICOAGULANT STUDY

We applied our framework to an anticoagulant study with

a curated dataset of over 6000 patients from the Interna-

tional Warfarin Pharmacogenomics Consortium (IWPC) [15].

Warfarin is a treatment for blood clots that can lead to

thromboembolism. Personalized warfarin dosing is valuable

because of its narrow therapeutic range and diverse individual

responses [16].

The cohort selection process is shown in Fig. 3. The

selected cohort is divided into train and test sets with a

ratio of 9:1. We extracted 25 covariates with both clinical

and pharmacogenetic variables, including physical attributes,

medical conditions, concomitant medications, genotype status

of functional warfarin genetic polymorphisms, therapeu-

tic INR (International Normalized Ratio), etc. In practice,

pharmacogenetic-guided dosing can improve dosing effec-

tiveness in highly sensitive responders versus that of patients

who received fixed-dose [17]. Different from studies that

considered a fixed target INR [12], we constructed a binary

outcome that indicates whether a patient’s INR falls within

their personalized target range. This individualization is

important since for deep vein thrombosis and atrial fibrillation,

the target is 2.0–3.0; for high-risk heart valve patients, it’s

above 3.0; a 1.5–2.0 range is recommended for some heart

valve patients to reduce bleeding risks [18].

In this study, our objective diverges from refining the

accuracy of warfarin dosage predictions, as explored in

previous research [19], [20], [21]. Instead, our model focuses

on providing a quantifiable interpretation of the influence

of baseline covariates through the learned coefficients while

accounting for their interactions with the treatment.

A. Distillation of Soft Labels

Note that in this case, only binary labels are available for

training, which causes the left-hand side of Eq. (3), Ȳi =
log Pr(Yi=1|Xi,τi)

Pr(Yi=0|Xi,τi)
, to be ill-defined. To address this issue, we

train an intermediary model and then use the prediction of

each sample (i.e., soft labels) in lieu of the binary ground

truth to construct Ȳi. We refer to this intermediary model

as the “expert model” and our model as the “student model”

Fig. 3. Cohort selection in the IPWC dataset.

following [22]. In our implementation, we used XGBoost as

the expert model.

For data preprocessing, we normalized all continuous

variables and one-hot encoded all categorical variables. Since

the labels are highly imbalanced, we augmented the data

with SMOTE resampling. The efficacy of the expert model is

summarized in the top-left panel in Fig. 4. The expert model

attaches a soft label to every patient as the training input for

the student model.

Fig. 4. Predictive performance comparison. The arrow direction indicates
the comparison’s truth benchmark.

B. Student Model Training

We aligned the train, validation, and test split with the

expert model and estimated the student model. To mitigate

the computational load, we used the Epanechnikov kernel

with compact support, which is defined as K(t) = 3
4 (1 −

t2)1{|t|≤1}. Fig. 5 and 7 show the estimated coefficients with

bootstrapped confidence intervals with k = 30.

As a classification model, the student model’s performance

is constrained by the expert model because the student model

does not have direct access to the ground truth and is only

trained by the expert model. Using a more sophisticated and

well-specified expert model may improve the accuracy.

In our model, XTβ provides a diagnostic score of the

patient. This term can be analogized to the linear predictor in



Fig. 5. Values of β.

logistic regression. We compare the linear score estimation

between our model and other linear models that offer similar

insights, including Logistic Regression (LR) and Linear

Discriminant Analysis (LDA), each with a variant in which

the treatment variable acts as a baseline covariate.

The comparison in Fig. 6 shows a consensus in the sign of

many parameters across various models, with our estimations

in red standing out. Our model shows caution with genetic

polymorphism features, pushing many coefficients towards

zero, unlike other linear models. It takes a bolder stance on

medical history and condition features, resulting in larger

coefficient estimates. However, this analysis does not fully

assess the clinical significance of these differences, necessi-

tating further evaluation by domain experts to understand the

clinical impact of our findings.

C. Interpretation of Estimates

For XTβ, Fig. 5 indicates that larger values for “age”,

“height”, and “weight” have a negative association with pre-

treatment and may adversely affect the patient’s ability to

achieve the target INR range. This effect is attributed to

higher values for these variables generally corresponding to

greater body sizes. Additionally, specific genotypes, such

as variants of CYP2C9, are linked to diminished enzyme

activity. Individuals carrying these alleles typically metabolize

warfarin more slowly, thereby facing a higher risk of bleeding

at conventional doses. Consequently, they often necessitate a

lower warfarin dose to attain the target range.

For the analysis of the second score XT ξ, it suffices to

examine function g at a fixed value of XTβ. As illustrated in

Fig. 8, a higher warfarin dose is beneficial for patients with

scores from -1.0 to 0.5. Conversely, for those with scores

Fig. 6. Linear diagnosis score comparison.

above 1.0, a significantly lower dosage is recommended.

Referring back to Fig. 7, “age” has a large coefficient, likely

due to older patients’ increased sensitivity to warfarin and

escalated risk of bleeding complications, necessitating lower

doses for the same therapeutic effect. Likewise, the substantial

negative coefficient associated with “weight” suggests that

higher body weight typically requires greater warfarin doses

to regulate their INR levels. Additionally, the negative

sign for “valve replacement” reflects that patients with

valve replacements often need higher warfarin doses. This

requirement is due to the elevated risk of clot formation in

these patients, warranting a higher target INR.

V. CONCLUSION

In this study, we introduce a modified partially linear

model that captures both the linear effects of covariates on

outcomes and the interaction between covariates and treatment.

Although our model and the estimation approach show

promise, it is limited by the lack of a theoretical underpinning

for parameter estimation: identifying sufficient conditions

under which our approach achieves statistical consistency is

an important future direction. Other future directions include



Fig. 7. Values of ξ.

Fig. 8. Estimated density function at fixed XT β = 0.5.

incorporating domain knowledge for better feature selection,

using longitudinal data for temporal insights, and enhancing

the model’s classifier effectiveness through techniques such

as adversarial sample identification [23]. Addressing these

limitations can bolster the model’s potential as a valuable tool

in data analysis and optimization of treatments, particularly

in the healthcare space.
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